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1 Introduction

Recent studies of gauge theories using the framework of the AdS/CFT correspondence

has revealed that gauge theories at large ’t Hooft coupling and at long-distances and low-

frequencies can be described by fluid mechanics [1–7].1 A hydrodynamic description implies

that the correlation functions of components of stress-energy tensor or conserved currents

are fixed once a few transport coefficients are known. These transport coefficients have been

evaluated for several examples of gauge theories at strong coupling using the AdS/CFT

correspondence. Recently, transport coefficients for non-linear hydrodynamics have been

obtained [9, 10]. These studies indicate that for field theories which admit a gravity

1For a review and a complete list of references please see [8]
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dual, the ratio of shear viscosity η to the entropy density s at strong t’Hooft coupling is

universal [5, 11] and is given by
η

s
=

1

4π
. (1.1)

Most studies of this ratio have been focused on asymptotic anti-de Sitter backgrounds in

various dimensions. The gauge/gravity correspondence also applies to stacks of Dp-branes

for arbitrary p [12, 13].2 It was shown in [5, 15] that the ratio of shear viscosity to entropy

density for theories on Dp-branes for p ≥ 2 also is 1/4π.3 An investigation of transport

coefficients for the theory on the D1-brane is missing in the literature.

In this paper, we begin a study of the hydrodynamic behaviour of field theories in

1 + 1 dimensions which admit a gravity dual. What makes one spatial dimension special

is the absence of shear. In fact, for the conformal field theories in 1 + 1 dimensions, there

are no transport coefficients. This is because there are no non-trivial components of the

symmetric traceless stress-energy tensor in these dimensions. The stress tensor is that of

a perfect fluid. Thus, to study non-trivial transport properties of field theories in 1 + 1

dimensions, it is necessary to study the non-conformal case. The only viscous transport

coefficient for non-conformal field theories in 1 + 1 dimensions is the bulk viscosity. The

simplest example of such a non-conformal field theory is the theory on the D1-brane, the

1 + 1 dimensional SU(N) gauge theory with 16 supersymmetries. It can be obtained as a

dimensional reduction of N = 4 SYM from 3 + 1 dimensions. We consider this theory at

finite temperature. It admits dual gravity descriptions in two regimes

(i)
√
λN−2/3 ≪ T ≪

√
λ, and (1.2)

(ii)
√
λN−1 ≪ T ≪

√
λN−2/3.

Here, the ’t Hooft coupling is denoted by λ = g2
YMN and T is the temperature. In regime

(i), the gravity dual is the background of that of the non-extremal D1-brane, while in

regime (ii), the dual is that of non-extremal fundamental string.

One reason why transport coefficients were not studied for backgrounds corresponding

to the D1-brane is that the gauge invariant fluctuations of supergravity fields found for

the case of Dp brane with p ≥ 2 cannot be extended to p = 1. In this paper, we isolate

the gauge invariant fluctuation of the graviton and the dilaton which corresponds to the

sound channel. From its equation of motion, we find the following dispersion relation for

its quasinormal mode

ω =
q√
2
− i

8πT
q2. (1.3)

This dispersion relation for the quasinormal mode remains the same for both the D1-brane

background as well as for the F1-string background. We show that the retarded two point

functions of components of stress tensor has a pole at the value of ω corresponding to the

sound mode. From the universal properties of hydrodynamics in 1 + 1 dimension, we find

that the pole is given by

ω = vsq − i
ξ

2(ǫ+ P )
q2. (1.4)

2For a review and recent developments on holography for the non-conformal case, please see [14].
3Other non-conformal systems were studied in [16–18]
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Here, vs is the speed of sound in the medium, ǫ the energy density and P the pressure.

By comparing the dispersion relation (1.3) and the above equation, we can read out the

following properties of the D1-brane gauge theory in both the regimes given in (1.2).

vs =
1√
2
,

ξ

s
=

1

4π
, (1.5)

where ξ is the bulk viscosity and s is the entropy density. As a cross check of our calcu-

lations we use the Kubo’s formula to evaluate the bluk viscosity and show that the ratio

ξ/s is given by 1/4π.

It is curious that the ratio of the bulk viscosity to entropy density has the same value

as that of ratio η/s for strongly coupled field theories which admit gravity duals in higher

dimensions. Also the fact that the ratio ξ/s remains 1/4π for both the D1-brane and the

F1-string suggests that this ratio might be universal for a class of gravitational backgrounds.

We show that the this ratio continues to be 1/4π for the class of 1 + 1 dimensional non-

conformal field theories on D1-branes at cones over Sasaki-Einstein 7-manifolds.

The organization of the paper is as follows: In the next section, we briefly review

the gauge/gravity correspondence and thermodynamics for the case of the D1-brane. In

section 3, we discuss the implications of hydrodynamics on the thermal Green’s functions

in 1+1 dimensions. In section 4, we discuss the details of how to isolate the gauge invariant

fluctuation of the dilaton and the graviton corresponding to the sound channel. We then

derive the dispersion relation of the quasi normal mode for the sound channel. We also

evaluate the two point functions of the stress tensor components from gravity and show that

the Lorentz structure and the structure of its pole agrees with that predicted from general

considerations of hydrodynamics in 1 + 1 dimensions. In section 5, we show that the ratio

of ξ/s is 1/4π for both the D1-brane background and that of the fundamental string. This

is done in two ways: we match the dissipative part of the quasi-normal mode for the sound

channel in gravity to that expected from general hydrodynamic considerations and more

directly by applying the Kubo formula for bulk viscosity in terms of stress tensor correlators.

Both methods yield the ratio of bulk viscosity to entropy density to be 1/4π. We then show

that this ratio continues to be 1/4π for the class of field theories in 1+1 dimensions dual to

D1-branes at cones over Sasaki-Einstein manifolds. Appendix A. shows that the constraints

we impose on the graviton and the dilaton perturbations of the D1-brane background

are consistent with their equations of motion. Appendix B. contains proofs of the two

identitites which are used in our derivation of the equation for the sound mode.

2 Gauge/gravity duality for the D1-brane

In this section, we briefly review the statement of gauge/gravity duality for the case of N

D1-branes. This enables us to set the notations and conventions that we will use and also

to state the bounds on temperatures for which the bulk viscosity evaluated holographically

from the gravity background can be trusted.

In [13], it was argued that SU(N) Yang-Mills with 16 supercharges in 1+1 dimensions

at large N is dual to the near horizon supergravity solution of D1-branes. The near horizon
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supergravity solution in the Einstein frame is given by

ds210 = H− 3

4 (r)(−dt2 + dx2
1) +H

1

4 (r)(dr2 + r2dΩ2
7), (2.1)

eφ(r) = H(r)
1

2 ,

∗FRR
3 = 6L6ωS7

,

where

H(r) =

(

L

r

)6

, and L6 = g2
YM26π3Nα′4, (2.2)

and dΩ2
7 refers to the metric on the unit 7-sphere and ωS7

its volume form. Note that, we

have dualised here the Ramond-Ramond charge of the D1-brane. The gravity description

is valid in the energy domain

gYMN
1

6 ≪ U ≪ gYM

√
N. (2.3)

Here U = r/α′ sets the energy scale. Note that the Yang-Mills coupling in 1+1 dimensions

has the units of energy. For completeness, we mention that the background in (2.1) is the

solution of type IIB supergravity equations of motion in 10 dimensions obtained from the

following action

SIIB =
1

16πG10

∫

d10x
√−g

[

R(g) − 1

2
∂Mφ∂Mφ− 1

2 · 3!e
φ(F

(RR)
3 )2

]

. (2.4)

At both ends of the domain in (2.3), the curvatures of the supergravity solution in (2.1)

grow and the solution breaks down. In the UV i.e. U ≫ gYM

√
N , one can trust the

perturbative description of Yang-Mills theory at any value of N . However in the domain

gYM ≪ U ≪ gYMN
1

6 , (2.5)

the dual description is given by the near horizon geometry of the fundamental string solu-

tion. This background is obtained by performing a S-duality transformation on the D-brane

background in (2.1)

ds210 = H− 3

4 (r)(−dt2 + dx2
1) +H

1

4 (r)(dr2 + r2dΩ2
7), (2.6)

eφ(r) = H(r)−
1

2 ,

∗FNS
3 = 6L6ωS7

.

Note that the only changes in the background compared to that of the D1-brane is φ→ −φ
and the Ramond-Ramond flux replaced by the Neveu-Schwarz flux on the 7-sphere. The

above background is a solution to the equations of motion from the following action

SIIB =
1

16πG10

∫

d10x
√−g

[

R(g) − 1

2
∂Mφ∂

Mφ− 1

2 · 3!e
−φ(F

(NS)
3 )2

]

. (2.7)

Unlike the case of the AdS/CFT duality, the supergravity solution in (2.1) and (2.6) is

not asymptotically AdS3 but only conformal to AdS3 [12]. Finally, deep in the IR i.e.
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U ≪ gYM, the valid description is given in terms of the conformal field theory on the orb-

ifold (R8)N/SN for any N . Thus both in the UV and in the IR, the 1+1 dimensional super

Yang-Mills flows to a conformal field theory. It is only in the domain gYM ≪ U ≪ gYM

√
N

and in the limit of large N , one has a dual description in terms of a supergravity solution.

To study hydrodynamics of the D1-brane theory, we need to consider the theory at

finite temperature. The dual description is given in terms of the near horizon geometry of

the non-extremal D1-brane solution which is given by

ds210 = H− 3

4 (r)(−f(r)dt2 + dx2
1) +H

1

4 (r)

(

dr2

f(r)
+ r2dΩ2

7

)

, (2.8)

eφ(r) = H(r)
1

2 ,

FRR
7 = 6L6ωS7

,

where

f(r) = 1 −
(r0
r

)6
. (2.9)

The temperature and the entropy density of the D1-brane theory is related to the non-

extremal parameter r0 by

T =
3r20

2πL3
, s =

1

4G3

(r0
L

)4
=

2π4

4!G10
r40L

3. (2.10)

We can convert the domain of the validity of the D1-brane solution to ranges in temperature

by identifying U0 = r0/α
′ with the U in (2.3), using the defintion of L in (2.2) and the

following relations.

g2
YM =

gs

2πα′
, G10 = 23π6g2

sα
′4. (2.11)

We obtain √
λN− 2

3 ≪ T ≪
√
λ. (2.12)

Here, we have defined the t’Hooft coupling λ = g2
YMN . It is now clear that for large N ,

this is a sufficiently large domain. Now for T ≪
√
λN−2/3, the holographic dual of the

Yang-Mills theory is given by the non-extremal fundamental string solution.

ds210 = H− 3

4 (r)(−f(r)dt2 + dx2
1) +H

1

4 (r)

(

dr2

f(r)
+ r2dΩ2

7

)

, (2.13)

eφ(r) = H(r)−
1

2 ,

FNS
7 = 6L6ωS7

.

Again writing the domain in (2.5) in terms of temperature and the ’t Hooft coupling, we

obtain that the above solution can be trusted in the following temperature range

√
λN−1 ≪ T ≪

√
λN− 2

3 . (2.14)

To conclude, for very high temperatures T ≫
√
λ and for very low temperatures T ≪√

λN−1, the Yang-Mills theory flows to a free conformal field theory.

– 5 –
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In this paper we evaluate the bulk viscosity ξ using the holographic description for

temperatures in the regime
√
λN−1 ≪ T ≪

√
λ. From the above discussion, we see that

for T ≫
√
λ and T ≪

√
λ, the theory flows to a conformal field theory. Therefore, we expect

the bulk viscosity to vanish in these domains. However, in the regimes (2.12) and (2.14),

we will see that we obtain a non-trivial value of the bulk viscosity.

3 Hydrodynamics and the sound mode in 1 + 1 dimensions

In this section, we will discuss generalities of relativistic hydrodynamics in 1+1 dimensions.

As mentioned in the introduction, hydrodynamics in 1+ 1 dimensions is special due to the

absence of shear. We discuss here the constraints of conservation laws and hydrodynamics

on the structure of the thermal Green’s function of the stress tensor in 1 + 1 dimensions.

We show that this implies that the only hydrodynamic mode is longitudinal and we will

determine its dispersion relation.

3.1 Lorentz structure of the correlators

We show using translational invariance and conservation of the stress tensor that its Green’s

function is entirely characterized by a single function in 1 + 1 dimensions. We define the

retarded Green’s function of the stress energy tensor to be

Gµν,αβ(x− y) = −iθ(x0 − y0)〈[Tµν(x), Tαβ(y)]〉. (3.1)

Making use of translation invariance of the state, we can define the Fourier transform of

the above correlator denoted as Gµν,αβ(k). It is symmetric by definition in indices (µ, ν)

and (α, β). Further more, we have the following symmetry due to CPT invariance.

Gµν,αβ(k) = Gαβ,µν . (3.2)

The conservation of the stress-energy tensor leads to the following Ward identity

kµGµν,αβ(k) = 0. (3.3)

This suggests a useful tensor which forms a basis to write down the correlator is

Pµν = ηµν − kµkν

k2
. (3.4)

Note that kµPµν = 0. If the states involved in the expectation value in (3.1) are Lorentz

invariant, a convenient decomposition is to split the components into a part which contains

the trace ηµνηαβGµν,αβ and the traceless. This is given by

Gµν,αβ(k) = PµνPαβGB(k2) +Hµν,αβGS(k2), (3.5)

where

Hµν,αβ =
1

2
(PµαPνβ + PµβPνα) − PµνPαβ . (3.6)

Note that ηµνHµν,αβ = 0 and the two tensors in (3.5) are orthogonal; PµνPαβH
µν
,α′β′ = 0.

At this stage, it seems neccessary that one needs 2 functions to characterize the 2-point

– 6 –



J
H
E
P
0
4
(
2
0
0
9
)
0
4
2

function of the stress energy tensor namely, GB and GS . Now substituting explicitly the

value of kµ = (−ω, q), we find that

Ptt =
q2

ω2 − q2
, Ptx =

ωq

ω2 − q2
, Pxx =

ω2

ω2 − q2
. (3.7)

Using the above components of the tensor Pµν , it is easy to see that all components ofHµν,αβ

vanish. Therefore, the two point function of the stress tensor in a 1+1 dimensional theory

is entirely dependent on just one function GB(k2). Note that due to Lorentz invariance,

GB is a function of the Lorentz invariant quantity namely, k2. When Lorentz invariance is

broken in thermal field theory, one has rotational invariance only. For this situation, it is

convenient to use the spatial projection operator P T
µν which is defined as

P T
tt = P T

ti = P T
it = 0, Pij = δij −

kikj

~k2
. (3.8)

But for 1 + 1 dimensions, it is easy to see that this tensor vanishes identically. Therefore,

Pµν defined in (3.4) is purely longitudinal in this case. The only other projection operator

in 1 + 1 dimensions which is symmetric and constructed out the momenta and ηµν is the

P̃µν =
kµkν

k2
. (3.9)

But tensors constructed from the above operator do not satisfy the Ward identity (3.3).

Thus when Lorentz invariance is broken, one only has the following change. The arguments

of the functions in GB and GS changes from the Lorentz invariant quantity k2 to (ω, q).

Thus the two point function can be written as

Gµν,αβ(ω, q) = PµνPαβGB(ω, q). (3.10)

Writing it explicitly, we obtain

Gtt,tt =
q4

(ω2 − q2)2
GB(ω, q), Gtt,tx =

q3ω

(ω2 − q2)2
GB(ω, q), (3.11)

Gtt,xx =
ω2q2

(ω2 − q2)2
GB(ω, q), Gtx,tx =

ω2q2

(ω2 − q2)2
GB(ω, q),

Gtx,xx =
ω3q

(ω2 − q2)2
GB(ω, q), Gxx,xx =

ω4

(ω2 − q2)2
GB(ω, q).

Thus all components of the thermal Green’s function of the stress tensor are determined

by a single function GB .

3.2 Poles in the correlators

We show here that the function GB , which determines the thermal Green’s function must

exhibit a hydrodynamic singularity due to the propagation of sound. Using Lorentz invari-

ance, the stress tensor of a fluid in 1 + 1 dimensions is given by [19]

T µν = (ǫ+ P )uµuν + Pηµν − ξ(uµuν + ηµν)∂λu
λ, (3.12)

– 7 –
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where uµ is the 2-velocity with uµu
µ = −1 and ξ is the bulk viscosity. To obtain the

linearized hydrodynamic equations, consider small fluctuations from the rest frame of the

fluid. We then have the following

T 00 = ǫ+ δT 00, T 0x = δT 0x, T xx = P + δT xx, (3.13)

u0 = 1, ux = δux.

Note that u0 = 1 up to the linear order due to the constraint uµuµ = −1. From the form

of the stress tensor in (3.12), we can obtain the spatial variation of the velocity in terms

of the stress tensor to linear order

∂xδu
x =

∂xδT
0x

ǫ+ P
. (3.14)

Substituting this for the velocity in T xx, we obtain to the linear order

T xx = P + δT xx, (3.15)

= P − ξ

ǫ+ P
∂xδT

0x.

The hydrodynamic equations are ∂µT
µν = 0. These reduce to

∂0T
00 + ∂xT

x0 = 0, ∂0T
0x + ∂xT

xx = 0. (3.16)

Substituting the form of the linearized form of the stress tensor given in (3.15), we obtain

∂0δT
00 + ∂xδT

0x = 0, (3.17)

∂0δT
0x +

∂P

∂ǫ
∂xδT

00 − ξ

ǫ+ P
∂2

xδT
0x = 0.

Here we have used the fact that the thermodynamic variable P depends only on the en-

ergy density ǫ by some equation of state. Performing the Fourier transform of the above

equations in position and time, we obtain the following algebraic set of equations for δT 00

and δT 0x

− ωδT 00 + qδT 0x = 0, (3.18)

−iωδT 0x + iqv2
sδT

00 + q2
ξ

ǫ+ P
δT 0x = 0,

where we have defined the speed of sound vs as

v2
s =

∂P

∂ǫ
. (3.19)

Eliminating δT 00 using the first equation, we obtain the following equation for fluctuations

in δT 0x.
(

−iω2 + iq2v2
s +

ξ

ǫ+ P
ωq2

)

δT 0x = 0. (3.20)

Therefore the fluctuation in δT 0x obey the dispersion with ω given by

ω2 − v2
sq

2 + i
ξ

ǫ+ P
ωq2 = 0. (3.21)

– 8 –
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Solving this to the leading order, we obtain the following dispersion relation for this lon-

gitudinal mode which we call the sound mode.

ω = ±vsq − i
ξ

2(ǫ+ P )
q2. (3.22)

From the equations in (3.15) and (3.18), it can be seen that the remaining fluctuations also

obey the same dispersion relation. This implies by the usual arguments of linear response

theory [20] that the two point function of the components of the stress tensor has a pole at

the above value of ω. Thus we find the function GB in the retarded correlation functions

has a pole at (3.22).

4 The sound channel in gravity

As discussed in the earlier section, the D1-brane theory admits a holographic gravity dual

for the ranges in temperatures given in (2.12) and (2.14). In this section, we first study the

gravity solution of the D1-brane and isolate a diffeomorphism invariant perturbation which

we identify as the longitudinal mode corresponding to the sound mode. From the analysis

of its equation of motion and by imposing quasi-normal mode boundary conditions, we

derive its dispersion relation. We then evaluate the two point function of the components

of the stress tensor of the D1-brane theory holographically and confirm that it has the

structure predicted by the general properties of hydrodynamics in previous section.

To simplify our analysis, we first consistently truncate the 10 dimensional near horizon

geometry of the D1-brane in (2.8) to 3 dimensions by dimensionally reducing on the 7-

sphere using the following ansatz.

ds210 = e−14B(r)gµν(x)dxµdxν + e2B(r)L2dΩ2
7, (4.1)

= e−14B(r)
(

−c2T (r)dt2 + c2X(r)dz2 + c2Rdr
2
)

+ e2B(r)L2dS2
X7
.

Using this ansatz in the 10-dimensional supergravity equations of motion, one obtains a

set of coupled differential equations for the fields cT (r), cX(r), cR(r), φ(r) and B(r). It can

be shown that on identifying

B(r) = − 1

24
φ(r) (4.2)

and keeping the Ramond-Ramond flux through the 7-sphere constant, one can obtain a

consistent truncation of the 10-dimensional equations to effectively 3-dimensions [15, 21].

The truncated set of equations of motion can be obtained from the following Einstein-

dilaton system in 3 dimensions with action

S =
1

16πG3

∫

d3x
√−g

[

R− β

2
∂µφ∂

µφ− P(φ)

]

. (4.3)

Here, β = 16
9 and G3 is a three dimensional Newton’s constant. The dilaton is denoted by φ

and its potential is P = − 24
L2 e

4

3
φ. The coefficient in the dilaton potential is determined from

– 9 –
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the contributions due to the background flux through the 7-sphere and from its curvature.

The equations of motion are

Rµν =
β

2
∂µφ∂νφ+ P(φ),

�φ =
P ′(φ)

β
. (4.4)

The D1-brane in 10-dimension given in (2.8) reduces to

ds2 = −cT (r)2dt2 + cX(r)2dz2 + cR(r)2dr2, (4.5)

φ = −3 log
( r

L

)

, (4.6)

with the components of the metric given by

c2T =
( r

L

)8
f, c2X =

( r

L

)8
, c2R =

1

f

( r

L

)2
, (4.7)

with f = 1− r6

0

r6 . For future reference, we write down the the equations of motion explicitly

in terms of these functions:

c′′X
cX

− c′X
cX

c′R
cR

+
β

4
φ′2 +

c2RP
2

= 0, (4.8)

c′′T
cT

− c′T
cT

c′R
cR

+
β

4
φ′2 +

c2RP
2

= 0, (4.9)

c2RP + 2
c′T
cT

c′X
cX

− β

2
φ′2 = 0, (4.10)

φ′′ + φ′ ln′

(

cT cX
cR

)

=
c2RP ′

β
. (4.11)

4.1 Linearized equations of motion for the perturbations

We consider very small wave like perturbations in the background of the above solution

gµν → gµν + δgµν and φ → φ + δφ. Due to translational invariance along the D1-brane

directions, we can assume that all perturbations can be expanded using its Fourier mode.

Focusing on one such mode, we have

δgµν(t, z, r) = e−i(ωt−qz)hµν(r), δφ(t, z, r) = e−i(ωt−qz)ϕ(r). (4.12)

We further parametrize the metric perturbations as

htt = c2THtt, htz = c2XHtz, hzz = c2XHzz. (4.13)

– 10 –



J
H
E
P
0
4
(
2
0
0
9
)
0
4
2

Following [2, 3, 22], we fix the gauge by choosing δgrµ = 0. The equations of motion up to

linear order in perturbations are

H ′′
tt + ln′

(

c2T cX
cR

)

H ′
tt − ln′(cT )H ′

zz −
c2R
c2T
Z0 − 2c2R

∂P
∂φ

ϕ = 0, (4.14)

H ′′
tz + ln′

(

c3X
cT cR

)

H ′
tz = 0, (4.15)

H ′′
zz + ln′

(

cT c
2
X

cR

)

H ′
zz −H ′

tt ln′(cx) +
c2R
c2T
Z0 + 2c2R

∂P
∂φ

ϕ = 0, (4.16)

ϕ′′ + ln′ cT cX
cR

ϕ′ + c2R

(

ω2

c2T
− q2

c2X

)

ϕ+
1

2
φ′(H ′

zz −H ′
tt) −

c2R
β

∂2P
∂φ2

ϕ = 0, (4.17)

where At = q2
c2
T

c2
X

and Z0 = AtHtt + 2qωHtz + ω2Hzz. We also obtain following first order

constraints from Einstein equations for δRrµ.

H ′
zz +

q

ω
H ′

tz −
1

ω2
At ln′ cX

cT
Htt +

1

ω2
ln′ cX

cT
Z0 + βφ′ϕ = 0, (4.18)

H ′
tt − ln′

(

cX
cT

)

Htt +
ωc2X
qc2T

H ′
tz − βφ′ϕ = 0, (4.19)

ln′(cT )H ′
zz − ln′(cX)H ′

tt − βφ′ϕ′ +
c2R
c2T
Z0 + c2R

∂P
∂φ

ϕ = 0. (4.20)

In the appendix A, we show that the above 3 constaints can be consistently imposed on

the 4 dynamical equations of motion.

4.2 Diffeomorphism invariant sound mode

Fixing the gauge δgµr = 0 does not exhaust all gauge degrees of freedom. One is left

with the residual gauge freedom under the infinitesimal diffeomorphisms xµ → xµ + ξµ

with µ ∈ {t, z, r}. Following the approach of [22], we will construct a quantity using the

above perturbations which will be invariant under the diffeomorphism of the metric i.e.

δgµν → δgµν −∇µξν −∇νξµ. The perturbations change under diffeomorphism as

δgµν → δgµν −∇µξν −∇νξµ,

δgtt → δgtt − 2∇tξt → δgtt + 2iωξt +
(c2T )′

c2R
ξr,

δgtz → δgtz + iωξz + iqξt,

δgzz → δgzz − 2iqξz −
(c2X)′

c2R
ξr. (4.21)

Then, the combination Z0 = AtHtt + 2qωHtz + ω2Hzz changes as

Z0 → Z0 +
q2

c2X
(2iω)ξt +

q2

c2X

(c2T )′

c2R
ξr +

2qω

c2X
(iωξz − iqξt) −

ω2

c2X

(

2iqξz +
(c2X)′

c2R
ξr

)

,

δZ0 =
2ξrAH ln′(cX)

c2R
(4.22)
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where

AH = At
ln′ cT
ln′ cX

− ω2. (4.23)

The dilaton also changes under diffeomorphism as

ϕ → ϕ− ∂µφξµ → ϕ− φ′

c2R
ξr. (4.24)

We find the following combination gauge invariant.

ZP = Z0 +Aϕϕ where Aϕ =
2AH ln′(cX)

φ′
. (4.25)

Note that unlike the case of higher dimensional Dp-branes with p ≥ 2, studied by [15],

there is only a single gauge invariant mode for p = 1. Note that the Z0 constructed in [15]

for p ≥ 2 cannot be trivially extended for this case as H as defined in [15] does not exists for

p = 1. Here, we note that the role of H for p = 1 is played by the dilaton fluctuation. We

will call the diffeomorphism invariant fluctuation Zp as the sound mode as it constitutes

fluctuations longitudinal to the wave directions.

Next we outline the steps involved in obtaining the second order equation satisfied by

this mode. From the definition, we have

Z ′′
P = A′′

tHtt + 2A′
tH

′
tt +A′′

ϕϕ+ 2A′
ϕϕ

′ (4.26)

+AtH
′′
tt + 2qωH ′′

tz + ω2H ′′
zz +Aϕϕ

′′

where

At = q2
c2T
c2X
. (4.27)

Using equations (4.14)–(4.20), we simplify above to

Z ′′
P + ln′

(

cT cX
cR

)

Z ′
P − c2R

c2T
(At − ω2)ZP

= Htt

[

−4At

[

ln′

(

cT
cX

)]2

+A′′
t +A′

t ln′

(

cT cX
cR

)

]

+ϕ

[

4At ln′

(

cT
cX

)

βφ′ + ln′

(

cT cX
cR

)

A′
ϕ +A′′

ϕ + 2c2RP ′(At − ω2) +
c2R
β
P ′′Aϕ

]

+2A′
ϕϕ

′. (4.28)

Since A′
t = 2At ln′

(

cT

cX

)

,

A′′
t = 4At

[

ln′

(

cT
cX

)]2

+ 2At ln′′

(

cT
cX

)

. (4.29)

Evaluating the difference of the Einstein equations (4.8)–(4.9), we obtain

ln′

(

cT
cX

)

ln′

(

cT cX
cR

)

+ ln′′

(

cT
cX

)

= 0. (4.30)

– 12 –



J
H
E
P
0
4
(
2
0
0
9
)
0
4
2

Using equation (4.29) and (4.30), we obtain

Z ′′
P + ln′

(

cT cX
cR

)

Z ′
P − c2R

c2T
(At − ω2)ZP

= ϕ

[

4At ln′

(

cT
cX

)

βφ′ + ln′

(

cT cX
cR

)

A′
ϕ +A′′

ϕ + 2c2RP ′(At − ω2) +
c2R
β
P ′′Aϕ

]

+2A′
ϕϕ

′. (4.31)

Using Einstein equations and the dilaton equation of motion (4.8)–(4.11), one can prove

the following identities (see appendix. B ).

βφ′(At − ω2) +A′
ϕ = −

[

φ′′

φ′
+ ln′

(

cX
cT cR

)]

Aϕ, (4.32)

4At ln′

(

cT
cX

)

βφ′+ln′

(

cT cX
cR

)

A′
ϕ+A′′

ϕ+2c2RP ′(At−ω2)+
c2R
β
P ′′Aϕ =2A′

ϕ

[

c′R
cR

−φ′′

φ′

]

.(4.33)

Using relation (4.32), one can write the relation (A.4) as

Aϕ

[(

c′R
cR

− φ′′

φ′

)

ϕ+ ϕ′

]

= Z ′
P + ln′

(

cX
cT

)

ZP (4.34)

Finally using relation (4.33), the equation (4.31) can be written as

Z ′′
P + ln′

(

cT cX
cR

)

Z ′
P − c2R

c2T
(At − ω2)ZP = 2A′

ϕ

[

ϕ′ +

(

c′R
cR

− φ′′

φ′

)

ϕ

]

. (4.35)

Using the relation (4.34), we obtain

Z ′′
P +

[

ln′

(

cT cX
cR

)

− 2
A′

ϕ

Aϕ

]

Z ′
P −

[

c2R
c2T

(At − ω2) + 2
A′

ϕ

Aϕ
ln′

(

cX
cT

)]

ZP = 0. (4.36)

This is the equation for ZP from which we will obtain the dispersion relation for its quasi-

normal mode. Here we make the following observation regarding the equation of ZP .

Consider a minimally coupled scalar Ψ in the background (4.5), its equation of motion is

given by

1√−g∂µ

(√−ggµν∂νΨ
)

= 0, (4.37)

ψ′′ + ln′

(

cT cX
cR

)

ψ′ − c2R
c2T

(At − ω2)ψ = 0,

where gµν is the background metric in (4.5). The second line is obtained from the first by

focusing on the Fourier component Ψ(t, z, r) = e−i(ωt+qz)ψ(r). Now comparing the above

equation with the equation for ZP we see that the the equation for ZP (4.36) is almost

a equation for a minimally coupled scalar except for the terms that are proportional to

A′
ϕ/Aϕ. Note that the dilaton dependence of the equation for ZP is entirely contained in

these terms.

Finally we emphasize that the analysis to obtain the equation for ZP in (4.36) depended

only on the fact that the background is of the form (4.5) with a radially dependent dilaton
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profile (4.6) that satisfy the equations of motion (4.8), (4.9), (4.10) and (4.11) obtained

from the Lagrangian in (4.3). At each step we have not assumed any form for the functions

cT , cX , cR, φ, the dilaton potential P and any specific value for the constant β. Therefore

for any radially symmetric solution of the form (4.5) and a dilaton profile which solves the

dilaton equation of motion, the equation for ZP is given by (4.36).

4.3 The dispersion relation of the sound mode

For further analysis, we will use the explicit expressions of metric coefficients and dilaton.

We first change the variable to Y = ZP

Aϕ
and the independent variable to u =

r2

0

r2 , then the

equation becomes

∂2
uY − (2 + u3)

u(1 − u3)
∂uY −

[

q2L6

4r40

(1 − λ− u3)

(1 − u3)2
+

18u4(4λ− 3)

(1 − u3)(4 − 4λ− u3)2

]

Y = 0, (4.38)

where λ = ω2

q2 . First we look for its solution near the horizon. For 1− u≪ 1, the equation

becomes

∂2
uY − 1

1 − u
∂uY +

[

α2ω2

9(1 − u)2
+

6

(3 − 4λ)(1 − u)

]

Y = 0, (4.39)

where α = L3

2r2

0

. To pick up the ingoing solution at the horizon, let us define x = ln(1 − u).

Then in terms of x and for 1−u≪ 1, the above equation reduces to the oscillator equation

(

∂2
x +

α2ω2

9

)

Y = 0. (4.40)

Therefore, the ingoing solution for 1 − u ≪ 1 behaves as e−
i
3
αωx = (1 − u)−

i
3
αω. We next

consider a solution of the type

Y = (1 − u3)−
i
3
αωZ(u).

Then the equation for Z(u) is given by

∂2
uZ − ∂uZ

u(1 − u3)
[2 + u3 − 2iαωu3]

+Z

[

α2ω2 (1 − u4)

(1 − u3)2
− α2q2

(1 − u3)
− 18u4(4λ − 3)

(1 − u3)(4 − 4λ− u3)2

]

= 0. (4.41)

In this equation, all terms are dimensionless. From the definition of temperature in (2.10),

we see that α ∼ 1/T , therefore in the hydrodynamic limit

ω ≪ T and q ≪ T, (4.42)

we ignore terms of order q2/T 2, ω2/T 2, ωq/T 2 and higher, but keep terms of order ω/T ,

q/T . Performing this limit in the equation for Z, we obtain

∂2
uZ − {2 + (1 − 2iαω)u3}

u(1 − u3)
∂uZ − 18u4(4λ− 3)

(1 − u3)(4 − 4λ− u3)2
Z = 0. (4.43)
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The well behaved solution of the above equation at u = 1, the horizon, is given by

Z =
6λ− 2(1 − λ)(3 − 4iαω) − u3(3 + 2iαω)

12(3 − 2iαω)(4 − 4λ+ u3)
. (4.44)

To obtain the quasi-normal modes of this solution, we need to impose the Dirichlet condi-

tion Z = 0 at the boundary at u→ ∞. This leads to the following cubic equation for ω.

− 4iαω3 + 6ω2 + 4iαωq2 − 3q2 = 0. (4.45)

Solving this equation perturbatively by assuming ω ∼ q, we obtain the following dispersion

relation for the sound mode.

ω = ± 1√
2
q − i

α

6
q2 + · · · (4.46)

with

α =
L3

2r20
=

3

4πT
.

4.4 Holographic evaluation of the stress tensor correlators

In this section, we use the standard prescription of the gauge/gravity correspondence to

evaluate the stress tensor correlations. For this, we first need to expand the action in (4.3)

along with the Gibbons-Hawking boundary term to second order in the fluctuation Hµν .

The bulk action and the boundary term is given by

S = Sbulk + SGH, (4.47)

S =
1

16πG3

∫

d3x
√−g

[

R− β

2
∂µφ∂

µφ− P(φ)

]

+
1

8πG3

∫

d2x
√
−hK|r→∞.

where

β =
16

9
P = − 24

L2
e4φ/3.

and h is the boundary metric at a large but fixed value of r and K is the extrinsic curvature

of the boundary.4 Using the equations of motion (4.14)–(4.17) and the constraints (4.18)–

(4.19) we can rewrite the expansion of the bulk action to second order in the fluctuations

as a total derivative in the radial coordinate. This is given by

S
(2)
bulk =

∫

d3x

[

− 3c3X
2cT cR

HtzH
′
tz +

c3X
cT cR

(

c′T
cT

− 2
c′X
cX

)

H2
tz −

β

2

cT cX
cR

ϕϕ′

+
cT cX
4cR

(Htt +Hzz)(Htt +Hzz)
′ +

cT cX
2cR

ln′(cT cX)HttHzz

+
cT cX
4cR

{

HttH
′
tt +HzzH

′
zz + (Htt −Hzz)

(

c′T
cT
Htt −

c′X
cX
Hzz

)}

+
β

4

cT cX
cR

(Htt −Hzz)φ
′ϕ

]′

. (4.48)

4In general there are counter terms one has to add to regulate the action [14, 23–25], these counter terms

are crucial to regulate the one point function of the stress tensor. However for the two point functions which

we will be interested in, they are not relevant.

– 15 –



J
H
E
P
0
4
(
2
0
0
9
)
0
4
2

The second order perturbation in extrinsic curvature term is given by

√
−hK = − c3X

8cT cR

[

4

(

c′T
cT
H2

tz − 3
c′X
cX
H2

tz − 2H ′
tzHtz

)

+
c2T
c2X

(Htt +Hzz)
(

2(Htt +Hzz)
′ + ln′(cT cX)(Htt +Hzz)

)

]

. (4.49)

Since the bulk action at second order in perturbation is just a total derivative we just have

to evaluate its contribution at the boundary. Then the boundary action at second order in

fluctuations including the Gibbons Hawking term then reduces to

S(2) =
1

16πG3

∫

dωdq

(2π)2
L (4.50)

where

L =
c3X

4ωqcT cR
ZP (~k)H ′

tz + Lcontact, (4.51)

and Lcontact represents the part of the Lagrangian without any derivatives.

Lcontact = −cT cX
4cR

[

ln′(cT cX)HttHzz +
c′X
cX
H2

tt +
c′T
cT
H2

zz − 2
q

ω
ln′

(

cX
cT

)

HtzHtt

]

+
c3X
cT cR

c′X
cX
H2

tz −
cT cX
4cR

ϕ

[

2ϕ

{

c2RP ′

φ′
− β ln′(cT cX)

}

− 2βφ′(Htt −Hzz)

+
Aϕ

ω2
ln′

(

cX
cT

)

Htt +
2Z0

φ′

{

c2R
c2T

− ln′ cT
ω2

ln′

(

cX
cT

)}]

. (4.52)

To obtain the above form of the action we have used the constraints (4.18)–(4.20) to rewrite

all derivative terms in L in terms of the derivative H ′
tz. We can further manipulate the

boundary action and reduce it to the form

S(2) =
1

16πG3

∫

dωdq

(2π)2
A(ω, q, r)Z ′

P (r,~k)ZP (r,−~k) + S
(2)
CT, (4.53)

where

A(ω, q, r) = − β

2A2
ϕ

cT cX
cR

. (4.54)

The contact term in equation (4.53) is

S
(2)
CT =

1

16πG3

∫

dωdq

(2π)2
[Lcontact] −A

[

A′
tHtt +

(

2At +
Aϕ

2βω2

)

ln′

(

cX
cT

)

Htt

+ϕ

{

A′
ϕ + βφ′(At − ω2) −Aϕ

(

ln′(cR) − φ′′

φ′

)}

(4.55)

+Z0

{

− ln′

(

cX
cT

)

+
Aϕ

βφ′
c2R
c2T

− Aϕ

βφ′ω2
ln′(cT ) ln′

(

cX
cT

)}]

ZP (r,−~k).

Now that we have the boundary action, we can evaluate the stress-tensor correlators

by using the standard rules of the AdS/CFT correspondence. Note that in this case

the geometry is not asymptotically AdS. However we expect the rules of the AdS/CFT
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correspondence to still be valid for this case since it can be related to the anti-de Sitter

geometry up to a conformal factor [12, 14]. The boundary values of the fluctuation Hµν

couple to the stress tensor of the boundary theory as in [3]

Scoupling =
1

2

∫

d4x[H0
ttT

tt +H0
zzT

zz + 2H0
tzT

tz]. (4.56)

Here, the indices are raised, lowered and contracted using the flat metric ds2 = −dt2 +dz2.

The superscript 0 indicates the fact that we are looking at the r → ∞ or the u =
r2

0

r2 → 0

limit of the corresponding bulk fields. Thus these correspond to the boundary values of the

fluctuations Hµν . Using the above coupling and the rules of the AdS/CFT correspondence

summarized in the equation

〈exp(iScoupling)〉 = exp[iS(2)(H0
µν)], (4.57)

we can evaluate the various two point functions of the components of the stress tensor.

Consider the retarded two point function Gtt,tt = −i〈[Ttt, Ttt]〉, using the AdS/CFT pre-

scription we obtain

Gtt,tt = −4
δS(2)

δH0
tt(
~k)δH0

tt(−~k)
. (4.58)

From the definition of ZP , we note that its boundary value is related to the boundary

values of the fluctuations by

Z0
P = q2H0

tt + 2ωqH0
tz + ω2H0

zz +A0
ϕϕ

0. (4.59)

From (4.44), we see that the expansion of ZP near the boundary is given by

ZP = C(1 + · · · ) +Du3(1 + · · · ),

= Z0
P

[

1 + · · · + D

C

r60
r6

(1 + · · · )
]

. (4.60)

Here C(ω, q) andD(ω, q) are independent of u. The ellipses denote higher powers in u =
r2

0

r2 .

Now substituting the above expansion for ZP , in S(2) it is easy to see that relevant term

in the boundary action is the first term in (4.53) which involves the derivative of ZP . This

results in the following expression for the two point function of the stress tensor.

Gtt,tt = −4
δS(2)

δH0
tt(
~k)δH0

tt(−~k)
= − 1

16πG3

q4

(ω2 − q2)2
6r60
L7

D

C
. (4.61)

Comparing the above holographic result with (3.11) we see that the expected Lorentz fac-

tor for this correlator is reproduced. Furthermore we can read out the holographic value

of GB as

GB(ω, q) = − 1

16πG3

6r60
L7

D

C
. (4.62)

The poles in the Green’s function are therefore same as the zeros of the factor C. The

Dirichlet boundary condition for the mode ZP = 0 at the horizon is equivalent to setting
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C = 0 as noted for the case of backgrounds asymptotic to AdS which were studied in [22].

Thus the poles in the two point function of the stress tensor which leads to the dispersion

relation of the sound mode is as given in equation (4.46). As a consistency check of our

calculations, we have evaluated all the remaining two point functions of the components

of the stress tensor. In each case the expected Lorentz factor given in (3.11) is reproduced

with the same expression for GB(ω, q).

5 The ratio of bulk viscosity to entropy density

In this section, we use two methods to evaluate the ratio of bulk viscosity to entropy density

ξ/s of the D1-brane theory in the gravity regime which is valid for temperatures in the

range
√
λN− 2

3 ≪ T ≪
√
λ. We use the dispersion relation of the sound mode to read out

this ratio, then as a cross check we determine this ratio by evaluating the bulk viscosity

directly using the Kubo’s formula for the bulk viscosity in one spatial dimensions. We

then show that the ratio ξ/s continues to be the same for the temperatures in the range√
λN−1 ≪ T ≪

√
λN− 2

3 when the D1-brane background is replaced by the F1-string

solution. In both these regimes, the ratio

ξ

s
=

1

4π
.

We also show that for gauge theories corresponding to D1-branes at cones over Sasaki-

Einstein 7-manifolds the ratio continues to be 1/4π.

5.1 ξ/s using dispersion relation of the sound mode

Using the dispersion relation of the sound mode in gravity (4.46) and comparing it with the

dispersion relation of the sound mode using general hydrodynamic consideration (3.21), we

deduce the transport properties of the D1-brane matter at temperature T . As we have seen

in section 3, general hydrodynamics considerations give the following dispersion relation

for the sound mode

ω = vsq −
i

2

1

ǫ+ P
ξq2, v2

s =
∂P

∂ǫ
. (5.1)

Here, vs is the speed of sound in the medium P , the pressure and ǫ the energy density.

Now comparing this with the dispersion relation obtained from gravity in (4.46), we can

read out the speed of sound in the D1-brane matter as

v2
s =

1

2
. (5.2)

It is now easy to see that from the definition of the speed of sound vs = ∂P
∂ǫ , we obtain the

equation of state

ǫ = 2P

for the D1-brane matter. Thus the mediums seem to behave as a conformal fluid in 2 spatial

dimensions just like that of the M2-brane. The fact that the thermodynamic properties of

the D1-brane theory is similar to the M2-brane was noted earlier in [26] and [27]. In [26],
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it was noted that the entropy density of the D1-brane behaves like that of the M2-brane,5

while in [27] the speed of sound in the D1-brane matter was evaluated holographically just

using thermodynamics of the D1-brane and shown to be the same as given in (5.2). It

will be interesting to understand this coincidence since the D1-brane gravity solution is

certainly not of the M2-brane form.

From comparing the dissipative part of the dispersion relation in (4.46) and (5.1) we

see that
ξ

ǫ+ P
=
α

3
=

L3

6r20
=

1

4πT
. (5.3)

In the absence of chemical potentials, we have the following thermodynamic relation

ǫ+ P = Ts. (5.4)

Substituting the above equation in (5.3), we find that

ξ

s
=

1

4π
. (5.5)

Using (2.10) and the definition of L from (2.2), the entropy density can be written in terms

of the field theory variables and temperature as

s =
24π

5

2

33

N2T 2

√
λ
. (5.6)

Then the bulk viscosity is given by

ξ =
26π

7

2

33

N2T 2

√
λ
. (5.7)

Let us now compare the result in (5.5) with the ratio of bulk viscosity to entropy density

for Dp-branes with p ≥ 2. Using the results of [15] for Dp-branes with p ≥ 2 we have

ξ

s
=
ξ

η

η

s
=

1

4π

2(3 − p)2

p(9 − p)
. (5.8)

Note that the above equation is valid p ≥ 2, since the method used by [15] is valid only for

p ≥ 2. But using the result (5.5), it is clear that the formula for ξ/s obtained for p ≥ 2

continues to hold for also p = 1.

5.2 ξ/s using the Kubo’s formula

As a cross check of our calculations, we use the Kubo’s formula to obtain the ratio of bulk

viscosity to entropy density for the D1-branes. In 1 + 1 dimensions, Kubo’s formula for

bulk viscosity is given by (see for instance in [20])

ξ = lim
ω→0

1

ω

∫ ∞

0
dt

∫

dzeiωt〈[Tzz(x), Tzz(0)]〉. (5.9)

= lim
ω→0

i

ω
Gzz,zz(ω, q = 0).

5See below equation 2.17 in [26]
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As we have seen in section 4.4, the two point function of the stress tensor from gravity is

given by

Gzz,zz =
ω4

(ω2 − q2)2
GB(ω, q), GB = − 1

16πG3

r60
L7

D

C
. (5.10)

Here, the coefficients C and D are related to the asymptotic expansion of the solution near

the boundary at u→ 0 given by

ZP = C(1 + · · · ) +Du3(1 + · · · ). (5.11)

For the sound mode in (4.44), we find that

C =
(−4iαω3 + 4iαωq2 + 6ω2 − 3q2)

9(2iαω − 3)
,

D =
ω[9iωq2 + 8iα2ω(ω2 − q2)2 − 12α(2q4 − 3q2ω2 + ω4)]

54(3i + 2αω)(q2 − ω2)
. (5.12)

In limit q → 0, we obtain

C → −2ω2

9
D → −2iαω3

27

D

C
→ iαω

3
, (5.13)

and hence

Gzz,zz(ω, 0) = GB(ω, 0) = − 1

16πG3

6r60
L7

iαω

3
. (5.14)

Now using the temperature and the entropy density of the D1-branes solution given

in (2.10), we can write the two point function as

Gzz,zz(ω, 0) = −Tsαω
3

= −iωs
4π
. (5.15)

Substituting this result for the two point function into Kubo’s formula in (5.9), we obtain

the ratio
ξ

s
=

1

4π
. (5.16)

This agrees with that obtained from examining the dissipative part of the sound mode

in (5.5) and therefore is a consistency check on our calculations.

5.3 Universality of the ratio ξ/s

(i) ξ/s for the fundamental string

We have seen that in the range of temperatures
√
λN− 2

3 ≪ T ≪
√
λ for which the

D1-brane solution can be trusted, the ratio ξ/s is given by the ideal value 1/4π. We

now show that the ratio continues to be 1/4π for the temperature range
√
λN−1 ≪

T ≪
√
λN− 2

3 for which the fundamental string solution can be trusted. From (2.13),

we see that the only difference between the F1-string solution and that of the D1-

brane solution is that of the dilaton profile. In fact the F1-string solution can be

obtained from the D1-brane solution by replacing φ → −φ. On compactifying to 3

dimensions just as for the D1-brane case, one obtains a consistent truncation of the
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equations of motion. The equations of motion can be derived from the action in 3

dimensions given in (4.3) but with

β =
16

9
, and P = − 24

L2
e−

4

3
φ. (5.17)

The F1-string solution in 10 dimension given in (2.13) reduces to

ds2 = −cT (r)2dt2 + cX(r)2dz2 + cR(r)2dr2, (5.18)

φ = 3 log
( r

L

)

. (5.19)

with cT , cX , cR and f given by (4.7) just as for the D1-brane case. Note that the only

change from the D1-brane case is that of the sign of the dilaton.

The analysis of the linearized perturbation and obtaining the equation for the sound

mode in section 4.1 and 4.2 just depended on the fact that the background is of the

form in (5.18) and radially symmetric. Thus the equation for the sound mode for the

F1-string solution continues to be (5.20) which is given by

Z ′′
P +

[

ln′

(

cT cX
cR

)

− 2
A′

ϕ

Aϕ

]

Z ′
P −

[

c2R
c2T

(At − ω2) + 2
A′

ϕ

Aϕ
ln′

(

cX
cT

)]

ZP = 0. (5.20)

In the above equation, the only dependence on the dilaton profile is due to the ratio
A′

ϕ

Aϕ
. From the definition of Aϕ in (4.25), we see that this ratio is given by

A′
ϕ

Aϕ
=

[AH ln′(cX)]′

AH ln′(cX)
− φ′′

φ′
. (5.21)

Since AH just depends on the components of the metric (4.23), the only difference

for the F1-string can arise from the ratio φ′′/φ′. But it is easy to see from (5.18),

that this ratio is same as that of the D1-brane case. Therefore the ratio
A′

ϕ

Aϕ
for the

F1-string remains identical to that of the D1-brane case. Thus, the equation of the

sound mode ZP is the same for the F1-string. Now the rest of the analysis to extract

the dispersion relation for the sound mode proceeds identical to that of the D1-brane

case. This results in the ratio
ξ

s
=

1

4π
for the F1-string background. We have thus extended the evaluation of the bulk

viscosity to the temperature range
√
λN−1 ≪ T ≪

√
λ for the U(N) gauge theory

with 16 supercharges in 1 + 1 dimensions.

(ii) ξ/s for D1-branes at cones over Sasaki-Einstein 7-manifolds

Here we show that the ratio of the bulk viscosity to entropy density for theories of

D1-branes at a cone over Sasaki-Einstein 7-manifolds is also given by 1/4π in the

regimes given by (1.2). The near horizon geometry of the corresponding supergravity

solution is given by

ds2 = H− 3

4 (r)
(

−f(r)dt2 + dx2
1

)

+H
1

4 (r)

(

dr2

f(r)
+ r2dS2

X7

)

, (5.22)

eφ(r) = H(r)
1

2 ,

F7 = 6L6ωX7
.
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where

H(r) =

(

L

r

)6

, f(r) = 1 −
(r0
r

)6
. (5.23)

and dS2
X7

stands for the metric of the 7 dimensional Sasaki-Einstein manifold X7,

and ωX7
is its volume form. Note that the only way this background differs from

D1-brane at flat space is by the replacement of the 7-sphere by the 7-dimensional

Sasaki-Einstein manifold. To be explicit here, we write down the metrics of two

7-dimension Sasaki-Einstein manifolds known as Q1,1,1 and M1,1,1 in the literature.

The metric of Q1,1,1 is given by [28]

dS2
Q1,1,1 =

1

16
(dψ −

3
∑

i=1

cos θidφi)
2 +

1

8

3
∑

i=1

(dθ2
i + sin2 θidφ

2
i ), (5.24)

while the metric of M1,1,1 is given by [29]

dS2
M1,1,1 =

1

64

(

dτ + 3 sin2 µσ3 + 2cos θ2dφ2

)2
(5.25)

+
3

4

(

dµ2 +
1

4
sin2 µ(σ2

1 + σ2
2 + cos2 µσ2

3)

)

+
1

8
(dθ2

2 + sin2 θ2dφ
2
2),

where

σ1 = dθ1, σ2 = sin θ1dφ1, σ3 = (dψ + cos θ1dφ1). (5.26)

Similar to the case of flat space we now dimensionally reduce to 3 dimensions using

the ansatz

ds210 = e−14B(r)gµν(x)dxµdxν + e2B(r)L2dS2
X7
, (5.27)

= e−14B(r)
(

−c2T (r)dt2 + c2X(r)dx2
1 + c2Rdr

2
)

+ e2B(r)L2dS2
X7
.

Again one can verify just as in the case of flat space the identification

B(r) = − 1

12
φ(r), (5.28)

provides a consistent reduction provided the 7-form flux through the Sasaki-Einstein

manifold is held constant. The equations of motion reduce to the Einstein-dilaton

system in 3 dimensions. The coefficient of the potential of the dilaton in this system

is dependent on the the Ricci-scalar of the Sasaki-Einstein manifold. For the metric

L2dS2
X7

when X7 is either Q1,1,1 or M1,1,1 the Ricci-scalar is given by

R(X7) =
42

L2
. (5.29)

This is same as that of the 7-sphere, which implies the coefficient of the dilaton

potential will remain the same in the effective action. Note that the Ricci-scalar for

the general Y (p,q) Sasaki-Einstein 7-manifolds constructed in [30] and recently studied
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in [31] is also given by (5.29).6 Taking all this into consideration, the effective action

in 3-dimensions is given by

I =
1

16πG̃3

∫

d3x
√−g

(

R(g) − 8

9
∂µφ∂

µφ+
24

L2
e

4

3
φ

)

, (5.30)

where
1

G̃3

=
L7Vol(X7)

G10
. (5.31)

We see apart from the definition of the 3 dimensional Newton’s constant, the effective

action remains the same as that of D1-branes in flat space. The background values of

cT (r), cX (r), cR(r) and φ(r) is also same as that of D1-branes in flat space. Therefore

the quasi-normal mode analysis remains identical and the ratio of the bulk viscosity

to the entropy density remains the same. The analysis for the case of the F1-strings

at cones over Sasaki-Einstein 7-manifolds is also identical to that of F1-strings in flat

space and yields the same ratio of bulk viscosity by entropy density.

The gauge theory of D1-branes at cones over Sasaki-Einstein 7-manifolds is different

from that of the SU(N) theory with 16 supercharges for the case of D1-branes in flat space.

The number of supersymmetries and the matter content of the theory is different. Inspite of

this for the temperature range (1.2), the theories of D1-branes at cones over Sasaki-Einstein

7-manifolds have the same value of ξ/s = 1/4π as that of D1-branes in flat space.

6 Conclusions

We have shown that the ratio of bulk viscosity to the entropy density for the SU(N) gauge

theory with 16 supercharges in 1+1 dimensions on the D1-branes in the temperature range√
λN−1 ≪ T ≪

√
λ is given by 1/4π. For temperatures outside this range, the D1-brane

gauge theory flows to a conformal field theory. We therefore expect the bulk viscosity to

entropy density of this theory to vanish for T ≪
√
λN−1 and T ≫

√
λ. A technical result

of our analysis is the equation for the sound mode given in (4.36) for any Einstein-dilaton

system in 3 dimensions given by the Lagrangian (4.3) which admits a radially symmetric

solution of the form (4.5) and a dilaton profile determined by the dilaton equation of motion.

We have also seen that for the theory of D1-branes at cones over Sasaki-Einstein 7-

manifolds the near horizon geometry dimensionally reduced to 3-dimensions is identical to

that of D1-branes in flat space. This implies that the ratio of bulk viscosity to entropy

density is given by 1/4π. At this point, it is perhaps worthwhile to investigate other 1 + 1

dimensional systems which admit gravity duals with different near horizon geometry. There

are two possible interesting geometries one could explore: One can turn on a R-charge along

the Cartan directions of the SO(8) R-symmetry of the D1-brane theory. This results in a

R-charged black hole in the Einstein-dilaton-Maxwell system in 3-dimensions. The near

horizon geometry of such black holes in 3-dimensions is different and it will be interesting to

evaluate the ratio of bulk viscosity to entropy density in this geometry. Another interesting

6See below equation 2.6 of [31].
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geometry in 3-dimensions is that of the D1-D5 system. This geometry is conformal, however

one could turn on a relevant operator in the orbifold theory of the D1-D5 system which will

render it non-conformal. The holographic dual geometry to such a system will necessarily

have a non-trivial dilaton profile and therefore a non-trivial bulk viscosity. This system

will fall into the general Einstein-dilaton system studied in this paper, with an specific

dilaton potential. We expect the dual geometry to be radially symmetric since one can

possibly choose the relevant deformation to be translationally invariant along the brane

directions. From the analysis in this paper we can then conclude that the equation for the

sound mode is given by (4.36). It is tempting to speculate that the ratio of bulk viscosity

to entropy density for this system will also be 1/4π. It will be interesting to construct this

dual geometry for the deformed D1-D5 system explicitly and verify this conjecture.

One of our motivations to study holographic duals to hydrodynamics in 1+1 dimensions

is the possibility of taking the non-relativisitc limit to obtain the Burger’s equation7 and

study turbulence in one spatial dimension. However the scaling put forward in [32, 33] to

obtain the non-relativisitc limit results in velocity of sound being infinite. This leads to

hydrodynamics with divergenceless velocity flow,

∂iv
i = 0.

In one spatial dimension, this implies a trivial solution for the velocity field. The velocity

field is constant in both space and time. It will be interesting to explore the possibility of

taking other non-relativistic limits which can lead to the Burger’s equation.

Note added. After completion of this work, we noticed the preprint [34] which has some

overlap with this paper.
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A Consistency of the constraint equations

Note that the equations (4.18)–(4.20) form 3 constraints for the 4 dynamical equa-

tions (4.14)–(4.17). These constraints must therefore be consistent with the dynamical

equations. That is, on evolving the constraints by the dynamical equations, one should

not generate new constraints. In this appendix, we show that by differentiating the 3

7Burger’s equation is the non-relativistic Navier-Stokes equation in one spatial dimension given by ∂tv+

v∂xv = ξ∂2

xv, where v is the velocity.
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constraints in (4.18) to (4.20) and reducing them again to first order equations using the

dynamical equations in (4.14) to (4.17), one does not generate any new constraints. This

allows us to conclude that the constraints are consistent with the dynamical equations and

they reduce the number of dynamical variables to just one, which we have identified as the

sound mode ZP .

We start with writing down 2 equations which we will use in our analysis. We define

Z0 = AtHtt + 2qωHtz + ω2Hzz, (A.1)

where At = q2
c2
T

c2
X

. Its first derivative is

Z ′
0 = A′

tHtt +AtH
′
tt + 2ωqH ′

tz + ω2H ′
zz. (A.2)

Using the constraint equations, one can remove H ′
tt and H ′

zz in favour of H ′
tz. Then the

expression reduces to

Z ′
0 =

{

A′
t +At ln′

(

cX
cT

)}

Htt − ω2 ln′

(

cX
cT

)

Hzz − 2ωq ln′

(

cX
cT

)

Htz + (At − ω2)βφ′ϕ.

(A.3)

Next we write down an equation obtained by differentiating ZP .

Z ′
P = Z ′

0 +Aϕϕ
′ +A′

ϕϕ,

= − ln′

(

cX
cT

)

ZP +

{

ln′

(

cX
cT

)

Aϕ + (At − ω2)βφ′ +A′
ϕ

}

ϕ+Aϕϕ
′. (A.4)

Here we have used the equation (A.3). Equation (A.4) can also be obtained by adding At

times (4.18) and ω2 times (4.19).

To check the consistency of the constraint equations, we first differentiate them, then

substitute the dynamical equations and reduce the equation to an equation with at the

most first derivatives. We then show that we do not obtain any new constraints. We start

with the equation (4.19). We get

− ln′

(

cT c
2
X

cR

)

H ′
tt +H ′

zz ln′(cT ) +
ωc2X
qcT 2

ln′

(

cR
cXcT

)

H ′
tz − ln′′

(

cX
cT

)

Htt +
c2R
c2T
ZP

+

(

2c2R
∂P
∂φ

− c2R
c2T
Aϕ − βφ′′

)

ϕ− βφ′ϕ′ = 0. (A.5)

When we use (4.30) on the combination of equations (A.5)-(4.20)+ln′
(

cT cX

cR

)

times (4.19),

we get

Ωϕ = 0, (A.6)

where

Ω = c2RP ′ − ln′

(

cT cX
cR

)

βφ′ − βφ′′. (A.7)

Now (A.6) is consistent for any fluctuation ϕ because Ω = 0, since the back ground

statisfies the dilaton equation of motion (4.11). Thus the equation (A.5) is consistent with

equations of motion.
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Next we differentiate (4.18) and use the dynamical equations to remove the second

derivatives. Doing this, we get the equation

− ln′

(

cT c
2
X

cR

)

H ′
zz −

q

ω
ln′

(

c3X
cT cR

)

H ′
tz +

{

ln′(cX) − At

ω2
ln′

(

cX
cT

)}

H ′
tt

− 1

ω2

(

At ln′ cX
cT

)′

Htt +

{

1

ω2
ln′′

(

cX
cT

)

− c2R
c2T

}

ZP +
1

ω2
ln′

(

cX
cT

)

Z ′
P

+

[

− 1

ω2

{

Aϕ ln′

(

cX
cT

)}′

+ βφ′′ +
c2R
c2T
Aϕ − 2c2R

∂P
∂φ

]

ϕ

+

{

− 1

ω2
Aϕ ln

(

cX
cT

)

+ βφ′
}

ϕ′ = 0. (A.8)

Note that using equation (4.30), one can show that

ln′′

(

cX
cT

)

−
[

ln′

(

cX
cT

)]2

= ln′

(

cT
cX

)

ln′

(

c2X
cR

)

. (A.9)

Using (A.9) on the combination of equations (A.8)-(4.20) +At

ω2 ln′
(

cX

cT

)

times (4.19)

+ln′
(

c2
X

cR

)

times (4.18), one obtains

− Ωϕ = 0. (A.10)

Hence, the equation (A.8) can be written as a linear combination of earlier constraint

equations.

The derivative of third constraint equation (4.20) gives us

H ′
zz

[

ln′′(cT ) − ln′ cT ln′

(

cT c
2
X

cR

)

− ln′ cX ln′ cT +
β

2
φ′

2
]

+H ′
tt

[

− ln′′(cX) + ln′ cX ln′

(

c2T cX
cR

)

+ ln′ cX ln′ cT − β

2
φ′

2
]

+ϕ′

[

βφ′ ln′

(

cT cX
cR

)

− βφ′′ − c2R
c2T
Aϕ + c2RP ′

]

+c2Rϕ

[

−2P ′ ln′

(

cT cX
cR

)

+ βφ′
(

ω2

c2T
− q2

c2X

)

+
Aϕ

c2T
ln′

(

c3T cX
c2R

)

− A′
ϕ

c2T

]

+
c2R
c2T

{

Z ′
P − ln′

(

c3T cX
c2R

)

ZP

}

= 0. (A.11)

We use equation Ω = 0 to remove the βφ′′ϕ′ term and equation (A.4) to remove Z ′
P . Next

we add 2 ln′
(

cT cX

cR

)

times (4.20) to it. We note that equation (4.30) can also be written as

ln′′ cT + ln′ cT ln′

(

cT cX
cR

)

= ln′′ cX + ln′ cX ln′

(

cT cX
cR

)

. (A.12)

Using this equation with the above manipulations, we obtain
[

ln′′ cT + ln′ cT ln′

(

cT cX
cR

)

− 2 ln′ cT ln′ cX +
β

2
φ′

2
]

(Hzz −Htt)
′ = 0. (A.13)
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The term in the square bracket is a combination of Einstein equations of motion, namely

equation (4.9)-1
2 (4.10), hence it vanishes. This implies that (A.11) can be written as a

linear combination of the three basic constraints upto equations of motion.

B Identities from background field equations

(i) Derivation of equation (4.32)

First we will derive equation (4.32) from the background equations of motion. The

(ω2) and (q2) part of the equation should independently vanish. Since

A′
ϕ = −φ

′′

φ′
Aϕ +

2

φ′

[

At

{

ln′′ cT + 2 ln′ cT ln′

(

cT
cX

)}

− ω2 ln′′ cX

]

, (B.1)

we need to show

2

φ′

[

βφ′2

2
+ 2 ln′ cT ln′

(

cT
cX

)

+ ln′′ cT + ln′ cT ln′

(

cX
cT cR

)]

= 0 (B.2)

and
2

φ′

[

βφ′2

2
+ ln′′ cX + ln′ cX ln′

(

cX
cT cR

)]

= 0. (B.3)

Using equations (4.9) and (4.8), we obtain

ln′′ cT = ln′ cT ln′

(

cR
cT

)

− β

4
φ′2 − c2R

2
P, (B.4)

ln′′ cX = ln′ cX ln′

(

cR
cX

)

− β

4
φ′2 − c2R

2
P. (B.5)

Replacing ln′′ cT (ln′′ cX) in equation (B.2), (B.3), we find that the left hand side

vanishes due to equation (4.10).

(ii) Derivation of (4.33)

Next, we will derive relation (4.33). The (ω2) and (q2) part of the equation should

be independently satisfied. They are

G′ + 2c2RP ′ + 2
c2RP ′′

βφ′
ln′ cX +G

[

2φ′′

φ′
+ ln′

(

cT cX
c3R

)]

= 0, (B.6)

4βφ′ ln′

(

cT
cX

)

+K ′ + 2c2RP ′ +
2c2RP ′′

βφ′
ln′ cT +K ln′

(

c3T
cXc3R

)

+
2φ′′

φ′
K = 0. (B.7)

where

G =
2

φ′

[

ln′′ cX − φ′′

φ′
ln′ cX

]

, (B.8)

K =
2

φ′

[

ln′′ cT + 2 ln′ cT ln′

(

cT
cX

)

− φ′′

φ′
ln′ cT

]

. (B.9)

To show (B.6), we first evaluate G′.

G′ = −2φ′′

φ′
G+

2

φ′

[

ln(3) cX − φ(3)

φ′
ln′ cX

]

. (B.10)
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Using equations (4.8) and (4.11), we can write

ln(3) cX − φ(3)

φ′
ln′ cX = ln′′ cX ln′

(

cR
cX

)

+ ln′ cX ln′′ cT +
φ′′

φ′
ln′ cX ln′

(

cT cX
cR

)

−2c2RP ′

βφ′
c′X
cX

c′R
cR

− c2RP ′′

β
ln′ cX − c2RP ln′ cR

+
φ′

2

{

−2c2RP ′ + βφ′ ln′

(

cT cX
cR

)}

. (B.11)

Then the left hand side of equation (B.6) becomes

l.h.s. = G ln′

(

cT cX
c3R

)

+
2

φ′

[

βφ′2

2
ln′

(

cT cX
cR

)

+ ln′′ cX ln′

(

cR
cX

)

+ ln′ cX ln′′ cT

+
φ′′

φ′
ln′ cX ln′

(

cT cX
cR

)

− 2c2RP ′

βφ′
c′R
cR

c′X
cX

− c2RP ln′ cR

]

=
2

φ′

[

βφ′2

2
ln′

(

cT cX
cR

)

+ ln′′ cX ln′

(

cT
c2R

)

+ ln′ cX ln′′ cT

+
2φ′′

φ′
ln′ cX ln′ cR − 2c2RP ′

βφ′
c′R
cR

c′X
cX

− c2RP ln′ cR

]

. (B.12)

Using equations (4.10) and (4.11), one can show that

− (ln′′ cT ln′ cX + ln′ cT ln′′ cX) =
1

2

[

c2RP − β

2
φ′2

]′

= c2RP ln′ cR +
βφ′2

2
ln′

(

cT cX
cR

)

. (B.13)

Then we obtain

l.h.s. =
2 ln′ cR
φ′

[

−2 ln′′ cX +
2φ′′

φ′
ln′ cX − 2c2RP ′

βφ′
c′X
cX

− 2c2RP
]

. (B.14)

Using equation (B.5) to replace ln′′ cX and equation (4.11) to replace φ′′, the l.h.s.

then vanishes due to equation (4.10).

To show (B.7), we first evaluate

K ′ = −2
φ′′

φ′
K +

2

φ′

[

ln′′ cT

{

ln′

(

cR
c2T

)

+ 2 ln′

(

cT
cX

)}

+
c′T
cT

c′R
cR

+
βφ′2

2
ln′

(

cT cX
cR

)

−c2RP ′φ′ − c2RP ln′ cR + 2 ln′ cT ln′′

(

cT
cX

)

+
2φ′′

φ′
ln′ cT ln′

(

cT
cX

)

+ ln′ cT

{

φ′′

φ′
ln′

(

cT cX
cR

)

+ ln′′

(

cT cX
cR

)

− 2c2RP ′

βφ′
ln′ cR − c2RP ′′

β

}]

. (B.15)

Using equations (4.11) and (4.9), we can write

c2RP ′

β
ln′ cT ln′ cR = 2φ′′

c′T
cT

c′R
cR

+2 ln′

(

cT cX
cR

)

{

ln′′ cT +

(

c′T
cT

)2

+
β

2
φ′2 +

c2RP
2

}

. (B.16)
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Using it, we get

K ′ = −2φ′′

φ′
K − 2c2RP ′ − 2c2RP ′′

βφ′
ln′ cT

+
2

φ′

[

ln′ cT

{

φ′′

φ′
ln′

(

c3T
cXc

3
R

)

− ln′′ cX − 2 ln′ cT ln′

(

cT cX
cR

)}

+ ln′′ cT ln′

(

cT c
3
R

c4X

)

− c2RP ln′(cT cX)

]

. (B.17)

The left hand side of the equation (B.7) then becomes

l.h.s. =
2

φ′

[

ln′′ cT ln′

(

c4T
c5X

)

+ 2 ln′

(

cT
cX

)

ln′ cT ln′

(

c3T
cXc3R

)

+ 2βφ′2 ln′

(

cT
cX

)

−c2RP ln′(cT cX) − ln′ cT ln′′ cX − 2(ln′ cT )2 ln′

(

cT cX
cR

)]

. (B.18)

Using equation (B.13), we get

l.h.s. =
2

φ′

[

ln′

(

cT
cX

){

4 ln′′ cT + 2 ln′ cT ln′

(

c3T
cXc

3
R

)

+ 2βφ′2
}

+ ln′

(

cT cX
cR

){

−c2RP +
βφ′2

2
− 2(ln′ cT )2

}]

.

(B.19)

Using equation (B.4), we get

l.h.s. =
2

φ′

[

ln′

(

cT
cX

){

βφ′2 − 2c2RP + 2 ln′ cT ln′

(

cT
cXcR

)}

+ ln′

(

cT cX
cR

){

−c2RP +
βφ′2

2
− 2(ln′ cT )2

}]

=
2

φ′

[

ln′

(

cT
cX

){

4 ln′ cT ln′ cX + 2 ln′ cT ln′

(

cT
cXcR

)}

+ ln′

(

cT cX
cR

)

{

2 ln′ cT ln′ cX − 2(ln′ cT )2
}

]

= 0 = r.h.s. , (B.20)

where we used equation (4.10) to get middle step.
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